A Nonhomological Proof of SemiPerfectness in Matrix Rings
نویسندگان
چکیده
منابع مشابه
A NEW PROOF OF THE PERSISTENCE PROPERTY FOR IDEALS IN DEDEKIND RINGS AND PR¨UFER DOMAINS
In this paper, by using elementary tools of commutative algebra,we prove the persistence property for two especial classes of rings. In fact, thispaper has two main sections. In the first main section, we let R be a Dedekindring and I be a proper ideal of R. We prove that if I1, . . . , In are non-zeroproper ideals of R, then Ass1(Ik11 . . . Iknn ) = Ass1(Ik11 ) [ · · · [ Ass1(Iknn )for all k1,...
متن کاملPresentations of matrix rings
Recently, there has been a significant interest in the combinatorial properties the ring of n×n matrices. The aim of this note is to describe a short (may be the shortest possible) presentation of the matrix ring Matn(Z). This presentation is significantly shorter than the previously known ones, see [7]. Surprisingly, the number of relations in the presentation does not depend on the size of th...
متن کاملDiagonal Matrix Reduction over Refinement Rings
Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement. Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N if and only if Mm ~Nm for all maximal ideal m of R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Missouri Journal of Mathematical Sciences
سال: 2002
ISSN: 0899-6180
DOI: 10.35834/2002/1403196